
Unidad III 

Procesamiento de consultas distribuidas.  

  

3.1 Metodología del procesamiento de consultas distribuidas.  

Primeramente se debe de contar con heterogenidad de los datos, para que 

puedan ser usados para formular consultas. Tenemos los sigueintes ejemplos: 

 

BD CENTRALIZADA 

 

 

 

BD DISTRUIBUIDA 

 

 

Asi como tambien necesitamos contar con: 

 

http://3.bp.blogspot.com/_cTNEChcCxNw/TSFja9oyVxI/AAAAAAAAABU/wp-Q0Y-ZY5c/s1600/ejemplo.jpg
http://2.bp.blogspot.com/_cTNEChcCxNw/TSFjdsBs-KI/AAAAAAAAABY/ycZeaJuJj3g/s1600/ejemplo1.jpg


-Localizacion de los datos para generar reglas heuristicas 

-Descomposicion de consultas en paralelo en cada nodo 

-Reducir la cantidad de datos a transferir en la red 

 

3.2 Estrategias de procesamiento de consultas distribuidas.  

Contamos con la estategia de Reformulacion de consultas, que nos sirve para 

encontrar q la informacion que nos va a proveer sea solo la que se le pidio por la 

fuente 

 

Tambien se cuenta con la estrategia de descomposicion de las fuentes, q consiste 

en que segun las fuentes q pidan cierto tipo de datos sean las atentidas con mayor 

velocidad. 

 

3.2.1 Árboles de consultas.  

• Arbol de consulta que es una estructura de árbol que corresponde a una 

expresión del álgebra relacional en el que las tablas se representan como 

nodos hojas y las operaciones del álgebra relacional como nodos 

intermedios.  

 

3.2.2 Transformaciones equivalentes.  

Cuando una base de datos se encuentra en múltiples servidores y distribuye a un 

número determinado de nodos tenemos:  

1.-el servidor recibe una petición de un nodo  

2.-el servidor es atacado por el acceso concurrente a la base de datos cargada 

localmente  

3.-el servidor muestra un resultado y le da un hilo a cada una de las maquinas 

nodo de la red local.  

Cuando una base de datos es accesada de esta manera la técnica que se utiliza 

es la de fragmentación de datos que puede ser hibrida, horizontal y vertical.  

En esta fragmentación lo que no se quiere es perder la consistencia de los datos, 

por lo tanto se respetan las formas normales de la base de datos.  

Para realizar una transformación en la consulta primero se desfragmenta 

siguiendo los estándares marcados por las reglas formales y posteriormente se 

realiza el envió y la máquina que recibe es la que muestra el resultado pertinente 



para el usuario, de esta se puede producir una copia que será la equivalente a la 

original. 

 

 

3.2.3 Métodos de ejecución del Join.  

Sean (R) y s(S) dos relaciones: 

Si R S= entonces r s es lo mismo que r x s, y por lo tanto se puede utilizar la 

estimación del producto cartesiano. 

Si R S es una clave de R entonces el número de tuplas en r s no es mayor que el 

número de tuplas en S. Si R S es una clave externa de R entonces el número de 

tuplas de r s es exactamente el número de tuplas de S. 

Si R S no es clave de R ni de S entonces se supone que cada valor aparece con 

la misma probabilidad , por lo tanto, sea t una tupla de r y sea R S=Ā, entonces se 

estima que la tupla t produce : 

tuplas en s, por lo tanto se estima el tamaño de r s = (a) al cambiar los papeles de 

r y s se tiene (b) 

Estos valores serán distintos si y sólo si V(A,r) V(A,s), si este es el caso, la más 

baja estimación de ambas será la más conveniente. 

Join en bucles anidados. 

Si z = r s, r recibirá el nombre de relación externa y s se llamará relación interna, el 

algoritmo de bucles anidados se puede presentar como sigue. 

para cada tupla tr en rpara cada tupla ts en ssi (tr,ts) satisface la condición 

entonces añadir tr ts al resultado Algoritmo 5–1 - Join en bucles anidados. 

Donde tr ts será la concatenación de las tuplas tr y ts . 

Como para cada registro de r se tiene que realizar una exploración completa de s, 

y suponiendo el peor caso, en el cual la memoria intermedia sólo puede 

concatenar un bloque de cada relación, entonces el número de bloques a acceder 

es de . Por otro lado, en el mejor de los casos si se pueden contener ambas 

relaciones en la memoria intermedia entonces sólo se necesitarían accesos a 

bloques. 



Ahora bien, si la más pequeña de ambas relaciones cabe completamente en la 

memoria, es conveniente utilizar esta relación como la relación interna, utilizando 

así sólo accesos a bloques. 

Join en bucles anidados por bloques. 

Una variante del algoritmo anterior puede lograr un ahorro en el acceso a bloques 

si se procesan las relaciones por bloques en vez de por tuplas. 

para cada bloque Br de rpara cada bloque Bs de spara cada tupla tr en Brpara 

cada tupla ts en Bssi (tr,ts) satisface la condición entonces añadir tr ts al resultado 

Algoritmo 5–2 - Join en bucles anidados por bloques. 

La diferencia principal en costos de este algoritmo con el anterior es que en el 

peor de los casos cada bloque de la relación interna s se lee una vez por cada 

bloque de r y no por cada tupla de la relación externa, de este modo el número de 

bloques a acceder es de donde además resulta más conveniente utilizar la 

relación más pequeña como la relación externa. 

Join en bucles anidados por índices. 

Este algoritmo simplemente sustituye las búsquedas en tablas por búsquedas en 

índices, esto puede ocurrir siempre y cuando exista un índice en el atributo de join 

de la relación interna. Este método se utiliza cuando existen índices así como 

cuando se crean índices temporales con el único propósito de evaluar la reunión. 

El costo de este algoritmo se puede calcular como sigue: para cada tupla de la 

relación externa r se realiza una búsqueda en el índice de s para recuperar las 

tuplas apropiadas, sea c = costo de la búsqueda en el índice, el cual se puede 

calcular con cualquiera de los algoritmos A3, A4 o A5. Entonces el costo del join 

es ; si hay índices disponibles para el atributo de join en ambas relaciones, es 

conveniente utilizar la relación con menos tuplas. 

 

3.3 Optimización de consultas.  

Para poder optimizar una consulta necesitamos tener claras las propiedades del 

algebra relacional para asegurar la reformulacion de la consulta, al optimizar una 

consulta obtenemos los siguientes beneficios: 

-minimizar costos 

-Reducir espacios de comunicaciones 



-Seguridad en envios de informacion 

 

 

 

 

 

3.3.1 Optimización global de consultas.  

Cuando hablamos de optimización de consultas nos referimos a mejorar los 

tiempos de respuesta en un sistema de gestión de bases de datos relacional, pues 

la optimización es el proceso de modificar un sistema para mejorar su eficiencia o 

también el uso de los recursos disponibles. 

En bases de datos relacionales el lenguaje de consultas SQL es el más utilizado 

por el común de los programadores y desarrolladores para obtener información 

desde la base de datos. La complejidad que pueden alcanzar algunas consultas 

puede ser tal, que el diseño de una consulta puede tomar un tiempo considerable, 

obteniendo no siempre una respuesta óptima. 

 

3.3.2 Optimización local de consultas.  

Para procesar una consulta local solo se hace referencia a tablas y bases de datos 

locales(no a vistas ni a tablas remotas) , es decir que estén dentro de la misma 

instancia delmanejador de bases de datos, en una única maquina y que nos se 

tenga que conectar alservidor a otras maquinas para poder efectuar la 

consulta.Cada subconsulta que se ejecuta en un nodo, llamada consulta local, es 

optimizada usandoel esquema local del nodo. Hasta este momento, se pueden 

http://es.wikipedia.org/wiki/Sistema_de_gesti%C3%B3n_de_bases_de_datos
http://es.wikipedia.org/wiki/Base_de_datos_relacional
http://es.wikipedia.org/wiki/SQL
http://es.wikipedia.org/wiki/Programador
http://es.wikipedia.org/wiki/Desarrollador
http://es.wikipedia.org/wiki/Base_de_datos
http://4.bp.blogspot.com/_cTNEChcCxNw/TSFmCU927RI/AAAAAAAAABc/LZ60TnZjGpQ/s1600/consultas.jpg


eligen los algoritmos 

pararealizar las operaciones relacionales. La optimización local utiliza los algoritmo

s desistemas centralizados 

 


